
ecr 2.0: A Modular Framework for
Evolutionary Computation in R

Jakob Bossek
University of Münster
Leonardo-Campus 3

Münster, Germany 48149
bossek@uni-muenster.de

ABSTRACT
The novel R package ecr (version 2), short for Evolutionary Compu-
tation in R, provides a comprehensive collection of building blocks
for constructing powerful evolutionary algorithms for single- and
multi-objective continuous and combinatorial optimization prob-
lems. It allows to solve standard optimization tasks with few lines
of code using a black-box approach. Moreover, rapid prototyping of
non-standard ideas is possible via an explicit, white-box approach.
This paper describes the design principles of the package and gives
some introductory examples on how to use the package in practise.

CCS CONCEPTS
• Software and its engineering→ Frameworks; • Computing
methodologies → Search methodologies;

KEYWORDS
Software-Tools, Evolutionary Optimization
ACM Reference format:
Jakob Bossek. 2017. ecr 2.0: A Modular Framework for Evolutionary Com-
putation in R. In Proceedings of GECCO ’17 Companion, Berlin, Germany,
July 15-19, 2017, 7 pages.
https://doi.org/10.1145/3067695.3082470

1 INTRODUCTION
Evolutionary Computation (EC) in all its facets, e. g., evolution-
ary/genetic algorithms or genetic programming, is a sophisticated
�eld in both research and application. Since basically all EC algo-
rithms stick to the basic evolutionary loop of parent selection, vari-
ation and survival selection, it is straightforward to design modular
frameworks to facilitate the design and application of evolutionary
algorithms. A plethora of such frameworks have been developed
in the last years for all major programming languages. Prominent
examples are - among many others - EO [14], jMetal [7] for Java and
DEAP [5, 11] for the Python programming language. Another promi-
nent example is the HeuristicLab optimization environment [26, 27].
Most EC frameworks follow the black-box framework model [20]:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4939-0/17/07. . . $15.00
https://doi.org/10.1145/3067695.3082470

provide a large collection of common evolutionary compoments
and aim to hide the majority of complex internal implementation
details. Though undeniably being useful, the black-box approach
is restricted due to its nature. Certain speci�c customizations may
not be possible with the black-box. Thus the user needs to concern
oneself with undocumented low level implementations which is
both cumbersome and time-consuming. An exception is DEAP. The
authors of the latter implemented a lightwight white-box frame-
work, where every step of the evolutionary algorithm is explicit,
transparent and both easy to read and understand.

The R programming language [19] itself contains some build-
in methods to tackle continuous optimization problems. Besides,
the R community has implemented a vast set of optimizers (the
comprehensive CRAN task view on optimization and mathemati-
cal programming [25] is a good starting point to explore the �eld
of solvers) including some R packages which (partly) focus on
evolutionary algorithms. The genalg [29] o�ers an R based ge-
netic algorithm for binary and real-valued representations, but it is
very restricted. Optimization of real-valued and permutation-based
search spaces only is possible with the gaoptim package by Tenorio
[24]. The packages rCMA [15] and cmaesr [2] contain implementa-
tions of the popular Covariance-Matrix-Adaptation Evolutionary
Strategy [12, 13]. rgenoud [29] integrates a quasi-Newton method
into an evolutionary algorithm. Several implementations of the
Di�erential Evolution algorithm introduced by Storn and Price
[23] for continuous global optimization problems exist: DEoptim
[18] and DEoptimR [4] provide pure R implementations whereas
the implementation in RcppDE [9] is written in C++. The �eld of
Genetic Programming is covered well with the rgp package [10].
The GA package [21] successfully attempts to supply a black-box
framework for genetic and evolutionary algorithms. It provides
a large collection of evolutionary operators and supports binary,
real-valued and permutation representations. All aforementioned
R frameworks are just capable of building EAs for single-objective
optimization problems. A collection of building blocks to aid the im-
plementation ofmulti-objective evolutionary algorithms is provided
by the packages mco and emoa [16, 17]. However, the latter pack-
ages in turn are not capable of handling single-objective problems.
Moreover, the development unfortunately has stagnated. Finally,
all above mentioned packages implement the black-box model and
are limited to standard representations, i. e., it is not possible to
de�ne custom genotypes. Recently, our R package ecr (version 1)
[3], short for Evolutionary Computation in R, was released. This
was our �rst attempt to implement a �exible general-purpose EC
framework to tackle arbitrary single- or multi-objecitve continu-
ous or combinatorial optimization functions in R and overcome all

1187

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany J. Bossek

Table 1: Features of some EC frameworks in R.

GA mco emoa ecr ecr2

black-box approach 3 3 3 3 3
white-box approach 7 3 3 7 3
custom genotypes 7 7 7 3 3
custom operators 3 3 3 3 3
parallelization 3 7 7 3 3
single-objective 3 7 7 3 3
multi-objective 7 3 3 3 3

aforementioned limitations. The experience in using the black-box
ecr to implement evolutionary algorithms as well as some major
drawbacks due to bad design choices and associated performance
issues, motivated a reimplementation as a white-box.

The main contribution of this paper is the introduction of the o�-
cial successor ecr (version 2) denoted as ecr2 in the following. It is
designed as a toolbox for rapid prototyping of custom evolutionary
algorithms for single- and multi-objective optimization problems
via a �exible white-box approach. Table 1 gives an overview of
important features for the major EC frameworks in R.

The remainder of the paper is organized as follows: Section2
sketches the core ideas of ecr2. A detailed introduction by code
examples is given in Section 3. Next, in Section 4 the �exibility of
parallel programming is illustrated. A brief performance study is
performed to compare ecr2 with its predecessor ecr and the GA
package in Section 5. Finally, Section 6 concludes the work and
gives an outlook on future development.

2 DESIGN PRINCIPLES AND CONVENTIONS
Despite all EAs following the common evolutionary loop, using
them in practice and in particular developing/adapting custom EAs
requires �ne-grained customization. In the black-box framework
model an increase in �exibility and an addition of customization
capabilities is mostly correlated with code bloating and a general
increase in code complexity. This makes the code more prone to
bugs and requires lengthy documentation. However, even the most
�exible black-box framework is limited: allowing for every possible
extension is an impossible task for black-box framework developers
[5]. Consequently, in the worst case even small adaptations to EAs
or EA components may require the user to dive into the undocumen-
tated internals of high-level components. We experienced the above
drawbacks in the �rst version of ecr. Thus, the reimplementation
is designed as a white-box framework. The core design principles
are inspired by the sophisticated Python framework DEAP:

(1) Make everything explicit; do not hide the internals. Instead,
let the user write the evolutionary loop by hand.

(2) Provide few simple building blocks / operators which are
su�cient to implement the majority of EA variants.

(3) Stick to few reasonable conventions: a set of individuals
is always a list and the �tness values are always stored
in a (m ⇥ n)-matrix wherem is the number of objectives
and n the number of elements in the set. Even in the single-
objective case the �tness is stored in a (1 ⇥ n)-matrix even

though generally a simple numeric vector is more appro-
priate.

(4) Rapid realization of EA prototypes is more valuable than
rapid execution. The latter can be alleviated by two means:
1) recoding critical components in C/C++ or FORTRAN1

or 2) parallelization.
Following these design principles the core of ecr is limited to

just three major building blocks: the control object, operators and
utility functions. Basically, the control object is a wrapper for the
�tness/objective function, some meta information on the �tness
function, e. g., the number of objectives, and the set of operators
which form the EA toolbox. These operators are registered to the
control object via a single function which also allows to initialize
the operators with parameters, e. g., the tournament size for a k-
tournament selection operator. Once the control object has been
set up, the evolutionary loop can basically be written with base R
only accessing the tools registered to the control object. However, a
collection of utility functions implement certain frequently used EA
submodules and thus can be used to facilitate the implementation
process. The best way to illustrate the interaction of the components
is by example as done in the next section.

3 EXAMPLES
In this sectionwe apply ecr in order to demonstrate its functionality
by application-oriented examples2. We start with a simple Genetic
Algorithm to solve the ONE-MAX problem to introduce the basic
work�ow. Next, a space-�lling design is generated by means of an
evolutionary algorithm. In this example custom representations
and operators are introduced. The last example deals with multi-
objective scheduling.

In order to execute the code snippets below one needs to install
ecr �rst. The current o�cial release is available at the Compre-
hensive R Archive Network (CRAN). The installation is straight
forward:
1 install.packages(�ecr�)
2 library(ecr)

The current development version is publicly available at the o�cial
GitHub repository https://github.com/jakobbossek/ecr2. Use the
devtools package to install the developement version.
1 install.packages(�devtools�)
2 devtools :: install_github(�jakobbossek/ecr2�)
3 library(ecr)

3.1 Example 1: Solving the ONE-MAX problem
This examples is inspired by the introductory example in [5]. The
ONE-MAX problem is the problem of counting bits and can be
formulated as follows: �nd the bitstring x 2 {0, 1}n that maximizes
f (x) =

P
xi . A straight forward representation of a bitstring in R is

via a simple vector of zeros and ones. Hence, the objective function
expects a single R vector and sums up its components.
1 fitness.fun = function(x) sum(x)

1It is possible in base R to interface C or Fortran code out of the box. Furthermore, the
R package Rcpp [8] makes the connection to C++ easy.
2The example codes can be downloaded – beside many others – from the o�cial
GitHub repository https://github.com/jakobbossek/ecr2/tree/master/inst/examples.

1188

ecr 2.0: Evolutionary Computation in R GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Furthermore, we de�ne some variables of the Genetic Algorithm.
We want to use a (µ + �)-strategy with µ = 25 and � = 30.
2 MU = 25; LAMBDA = 30; N.BITS = 50; MAX.ITER = 100

Thereafter, we initialize the control object. This object is of ut-
most importance. It stores the evolutionary toolbox and information
on the �tness function at hand.
3 ctrl = initECRControl(fitness.fun ,
4 n.objectives = 1L, minimize = FALSE)

Here we state the number of objectives via n.objectives and the
direction of the optimization via minimize (the default is to minimize
all objectives).

In the next step the toolbox is �lled with evolutionary operators.
We use the classical bit�ip mutation with independent probabil-
ity of mutation initialized as p = 1/N .BITS = 0.02 and standard
crossover recombination. Moreover, the mating pool is �lled via
binary tournament selection and the survival strategy selects the
�ttest individuals.
5 ctrl = registerECROperator(ctrl ,
6 �mutate�, mutBitflip , p = 1 / N.BITS)
7 ctrl = registerECROperator(ctrl ,
8 �recombine�, recCrossover)
9 ctrl = registerECROperator(ctrl ,
10 �selectForMating�, selTournament , k = 2L)
11 ctrl = registerECROperator(ctrl ,
12 �selectForSurvival�, selGreedy)

We use the registerECROperator function to store each operator in the
control object. The function expects the control object as the �rst
argument. The second argument is the slot to store the operator in,
e. g., the bit�ip mutation operator can be accessed via ctrl$mutate or
ctrl[[�mutate�]], respectively. Thhe third parameter is the operator
itself. Additionally, parameters for the corresponding operator may
be passed optionally as further arguments.

Next, an initial population of µ individuals is generated with
the genBin generator (generates a list of binary strings) and each
individual’s �tness is computed by means of the evaluateFitness

helper.
13 population = genBin(MU , N.BITS)
14 fitness = evaluateFitness(ctrl , population)

Finally, the evolutionary loop is implemented explicitly. It runs
for MAX.ITER generations and �nally returns the best individual and
its �tness value.

15 for (i in seq_len(MAX.ITER)) {
16 offspring = generateOffspring(ctrl ,
17 population , fitness ,
18 lambda = LAMBDA , p.recomb = 0.7, p.mut = 0.3)
19

20 fitness.o = evaluateFitness(ctrl , offspring)
21

22 sel = replaceMuPlusLambda(ctrl , population ,
23 offspring , fitness , fitness.o)
24 population = sel$population
25 fitness = sel$fitness
26 }
27

28 print(population [[which.max(fitness)]])
29 print(max(fitness))

Here, the call to generateOffspring in line 16 could be written more
explicit via
1 offspring = recombinate(ctrl , population , fitness ,
2 lambda = LAMBDA , p.recomb = 0.7)
3 offspring = mutate(ctrl , offspring , p.mut = 0.3)

We can go even one level deeper and explode the mutate function
in the third line of the previous listing: Sample � random numbers
from aU (0, 1) distribution and check for each whether it is lower
than the mutation probability. This results in a logical vector of
length �. Next, the mutation operator is applied in a functional
manner to all o�spring individuals that should be mutated.
1 idx.mut = runif(LAMBDA) < 0.3
2 if (any(idx.mut) > 0)
3 offspring[idx.mut] = lapply(offspring[idx.mut],
4 ctrl$mutate)

ecr also o�ers a black-box interface for standard tasks, e. g., for
a simple Genetic Algorithm like the one introduced in this Section.
The black-box is a single R function whose function signature
resembles the signature of the optim function in base R. This was
done to provide a familiar entry point for R users who aim to
solve some optimization problem with standard representations.
However, this is just an additional feature which may be useful
for some R users. The ONE-MAX function can be solved via the
black-box with the following code.
1 res = ecr(fitness.fun = fitness.fun ,
2 n.objectives = 1L, minimize = FALSE ,
3 representation = �binary�, n.bits = N.BITS ,
4 mu = MU, lambda = LAMBDA , survival.strategy = �plus�,
5 mutator = setup(mutBitflip , p = 1 / N.BITS),
6 p.mut = 0.3, p.recomb = 0.7,
7 terminators = list(stopOnIters(MAX.ITER)))
8

9 print(res$best.y)
10 print(res$best.x)

3.2 Example 2: Space-�lling sampling plan
Space-�lling designs play a crucial role, e. g., as initial designs
in surrogate-assisted optimization or the wide �eld of statistics.
Imagine the 2D continuous case: here we are interested in placing
N points in the unit square. The minimal distance between each
two points should be maximized (maximin criterion) and the points
should be as uniformly distributed as possible. This is widely known
as a Latin-Hypercube-Design (LHS) [22]. Here we use a (50, 50)-
strategy with 10-elitism, i. e., the 10 �ttest individuals of the i-th
generation are guaranteed to survive, to �nd a maximin-LHS design.
The (N ⇥ 2)-matrix of point coordinates is a good representation
in this case. Standard mutation is not suitable. Thus, we come up
with a custom mutator: replace each point of a given design with
probability 0.1 with a random point sampled uniformly at random
in [0, 1]2.
1 pointReplace = makeMutator(
2 mutator = function(ind) {
3 idx = which(runif(nrow(ind)) < 0.1)
4 ind[idx ,] = matrix(runif(2*length(idx)), ncol = 2)
5 return(ind)
6 },
7 supported = �custom�)

1189

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany J. Bossek

Each mutator expects an individual ind and an additional param-
eter list par.list, which may be used to override potential default
parameter values.

Next, we de�ne some variables and the �tness function, initialize
the control object and generate an initial population of µ individuals
by placing all N points uniformly at random in the unit square for
each individual.
8 MU = 50; LAMBDA = 50; MAX.ITER =2000L
9 fitness.fun = function(x) min(dist(x))
10

11 ctrl = initECRControl(fitness.fun ,
12 n.objectives = 1L, minimize = FALSE)
13 ctrl = registerECROperator(ctrl , �mutate�,pointReplace)
14 ctrl = registerECROperator(ctrl ,
15 �selectForSurvival�, selGreedy)
16

17 population = gen(matrix(runif(N * 2), ncol = 2), MU)
18 fitness = evaluateFitness(ctrl , population)

To keep track of the optimization process we initialize a logger,
which in the default settings logs the minimal, mean and maximal
�tness values of each generation.

19 logger = initLogger(ctrl , init.size = MAX.ITER + 1)
20 updateLogger(logger , population , fitness ,
21 n.evals = LAMBDA)

The init.size argument defaults to 1000. We recommend to adjust
this argument if the number of generations is known in advance
and no other stopping condition is applied. If at some point in time
the logger experiences an over�ow, the size is doubled internally.

Finally the evolutionary loop is implemented. Here the logic
simply copies the current population and mutates each individual
with probability 0.8.

22 for (i in seq_len(MAX.ITER)) {
23 offspring = mutate(ctrl , population , p.mut = 0.8)
24 fitness.o = evaluateFitness(ctrl , offspring)
25

26 sel = replaceMuCommaLambda(ctrl , population ,
27 offspring , fitness , fitness.o, n.elite = N.ELITE)
28 population = sel$population
29 fitness = sel$fitness
30 updateLogger(logger , population , fitness , n.evals =

MU)
31 }

Figure 1 illustrates a uniform sampling plan (right) and themaximin-
LHS design (left) returned by the above EA. We observe, that the
distances between pairs of points are indeed bigger. Figure 2 shows
a line plot of the logged statistics as returned by plotStatistics(

logger). We observe a typical behaviour of EAs: a rapid increase in
the best individuals �tness and a long period of just some minor
improvements. Every ecr plot function makes use of the ggplot2 R
package [28] in order to produce sophisticated high quality graphics.
An object of class ggplot is returned which may be decorated and
modi�ed with additional graphics layers, e. g., placing the legend
above the plot in Figure 2 was realized by plotStatistics(logger) +

theme(legend.position = �top�).

3.3 Example 3: Multi-objective scheduling
In the last example we tackle the bi-objective scheduling problem
1|di |

P
Ci ,Lmax, i. e., the task of �nding a schedule/permutation

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MAXIMIN−LHS UNIFORM

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Figure 1: Maximin-LHS (left) and a uniform design gener-
ated by placing points uniformly at random in the unit
square (right).

0.00

0.05

0.10

0 250 500 750 1000
gen

va
lu
e

stat fitness.min fitness.mean fitness.max

Figure 2: Line plot of minimal, mean and maximal �tness
values for each generation.

of n jobs for a single machine minimizing the sum of completion
timesCi , i = 1, . . . ,n and simultaneously minimizing the maximum
lateness Lmax = maxi (Ci � di), where di are the due dates of the
jobs. The goal is to approximate the Pareto-optimal set/front of
non-dominated solutions. For illustration we �rst simulate some
jobs by a simple heuristic: each job has a processingpi time sampled
uniformly at random from aU (1, 20) distribution. The due dates
are sampled in a subsequent step from a N (µ = 10pi ,� = 3pi)
distribution.
1 proc.times = runif(n.jobs , 1, 20)
2 due.dates = proc.times + sapply(proc.times ,
3 function(i) {
4 rnorm(1L, mean = 10 * i, sd = 3 * i)
5 })
6 jobs = data.frame(j = 1:n.jobs ,
7 p = proc.times , d = due.dates)

All jobs are stored in a data.frame with three columns: j for job
number, p for processing time and d for the corresponding due
date. Next we de�ne the bi-objective �tness function. The jobs are
ordered according to the passed permutation job.order. The return
value is a simple vector with two components, namely

P
Ci and

Lmax.
8 fitness.fun = function(job.order) {
9 sorted.jobs = jobs[job.order ,]
10 c(sum(cumsum(sorted.jobs$p)),
11 max(cumsum(sorted.jobs$p) - sorted.jobs$d))

1190

ecr 2.0: Evolutionary Computation in R GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

12 }

The evolutionary setup is very similar to the preceeding exam-
ples and thus not discussed in detail. The only thing that needs
attention here is that we register the NSGA-II [6] survival selection
mechanism via selNondom.

13 MU = 20; LAMBDA = 10; MAX.ITER = 2000
14

15 ctrl = initECRctrl(fitness.fun ,
16 n.objectives = 2L, minimize = c(TRUE , TRUE))
17 ctrl = registerECROperator(ctrl ,
18 �mutate�, mutScramble)
19 ctrl = registerECROperator(ctrl ,
20 �recombine�, recOX)
21 ctrl = registerECROperator(ctrl ,
22 �selectForMating�, selSimple)
23 ctrl = registerECROperator(ctrl ,
24 �selectForSurvival�, selNondom)
25

26 population = genPerm(MU , n.jobs)
27 fitness = evaluateFitness(population , ctrl)

We are interested in the dominated hypervolume (HV) trajectory
and thus provide a reference point and tell the logger to compute
the HV for the �tness of each generation.

28 ref.point = c(15000 , 500)
29

30 logger = initLogger(ctrl ,
31 log.stats = list(fitness = list(�HV� = list(
32 fun = computeHV ,
33 pars = list(ref.point = ref.point)))),
34 init.size = MAX.ITER + 1L)
35 updateLogger(logger , population ,
36 fitness = fitness , n.evals = MU)

Finally, the evolution is launched for the speci�ed number of gen-
erations. Figure 4 shows the plot generated by plotFront passing
the �nal matrix of �tness values. The hypervolume developement
is visualized in Figure 3.

37 for (i in seq_len(MAX.ITER)) {
38 offspring = recombinate(ctrl ,
39 population , fitness = fitness ,
40 lambda = LAMBDA , p.recomb = 0.8)
41 offspring = mutate(ctrl , offspring , p.mut = 0.3)
42

43 fitness.o = evaluateFitness(offspring , ctrl)
44

45 sel = replaceMuPlusLambda(ctrl , population ,
46 offspring , fitness , fitness.o)
47 population = sel$population
48 fitness = sel$fitness
49

50 updateLogger(logger , population ,
51 fitness = fitness , n.evals = LAMBDA)
52 }
53

54 stats = getStatistics(logger)
55 pl.stats = plotStatistics(stats)
56 pl.front = plotFront(fitness ,
57 obj.names = c(�SumCi�, �Lmax�))

4 PARALLELIZATION
In a run of an EA the three main steps, i. e., �tness evaluation, par-
ent/survival selection and application of evolutionary operators to

4000000

4500000

5000000

5500000

0 500 1000 1500 2000
gen

va
lu
e

stat fitness.HV

Figure 3: Line plot of the dominated hypervolume trajectory
of example 3.

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

60

80

100

120

2628 2630 2632 2635
SumCi (−> min)

Lm
ax

 (−
>

m
in

)
Figure 4: Approximation of the non-dominated front found
by the EMOA in example 3.

generate o�spring are iteratively performed until some termination
condition is satis�ed. Typically, in real-life applications, the �tness
evaluation is the dominating part regarding the computational time
needed. However, depending on the complexity of the underlying
representation, evolutionary operators may be costly as well. Since
EAs perform these steps over and over again it is straightforward
to parallelize these tasks.

In ecr2 it is possible to parallelize di�erent levels of computation
to utilize parallel computational power, e. g., multiple CPU cores or
a set of compute nodes of a HPC (High Performance Cluster). For
maximum �exibility in ecr2 parallelizable steps are realized with
the R package parallelMap [1], which o�ers a uni�ed interface to
di�erent parallelization back-ends in R and falls back to the non-
parallel lapply function if no back-end is activated. The review of
all back-ends and additional options of parallelMap is beyond
the scope of this article. We thus refer the interested reader to the
o�cial tutorial at the public GitHub repository3. At the moment
of writing, ecr2 allows parallel �tness function evaluation (level
�ecr.evaluateFitness�) and parallel o�spring generation (level
�ecr.generateOffspring�.

Setting up parallelization is realized by a simple function call
from parallelMap prior to the code fragment to parallelize. E. g.,
given a multicore CPU with four cores parallelStartMultiCore(cpus

= 3,level = �ecr.evaluateFitness�) activates parallelized �tness func-
tion evaluation on three cores4.

3https://github.com/berndbischl/parallelMap#parallelmap
4It is a good idea to keep one core for other computations in this case.

1191

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany J. Bossek

1 library(parallelMap)
2 library(ecr)
3

4 ...
5 parallelStartMultiCore(cpus = 3,
6 level = �ecr2.evaluateFitness�)
7 ...
8 fitness = evaluateFitness(control , population)
9 ...
10 parallelStop ()

The violin plots in Figure 5 visualize the distribution of the absolute
running times in seconds for both the parallel and the sequential
version of a (10 + 10)-EA executed 100 times on an arti�cially
delayed �tness function.

EAseq()

EApar()

9 12 15 18 21
Time [seconds]

Figure 5: Violin plot showing the distribution of absolute
running times of a sequential and parallel version of a (10+
10)-EA to optimize a �tness function with delayed function
evaluation. The parallelized version clearly outperforms the
sequential version.

To get a list of all currently supported parallelization levels call
the parallelGetRegisteredLevels() function.
1 parallelGetRegisteredLevels ()
2 > ecr: ecr.evaluateFitness , ecr.generateOffspring

5 PERFORMANCE COMPARISSON
The predecessor ecr had some serious performance issues due to
some unfortunate decisions during the design process. As a conse-
quence one of the top points on the agenda for ecr2was to put those
performance drawbacks behind. This goal was successfully accom-
plished in the course of reimplementation. By means of example
Figure 6 shows violin plots of the running times of a (100+ 100)-EA
runs each 100 times on a test function for each 1000 generations.
The ecr2 implementation was tested against the predecessor and
the GA package [21]. We observe quite similar distributions of the
GA and ecr2 implementations with ecr being lagged far behind by
a factor of about 10.

6 CONCLUSION
The majority of EC frameworks – and all EC frameworks for the
R language in particular – implement general purpose evolution-
ary components in a black-box manner hiding complex internals.
Though this black-box approach indeniably has its charm and bene-
�ts, it is nevertheless restricted in its customization options. Hence,

res.ecr

res.ecr2

res.GA

10 100
Time [seconds]

Figure 6: Violin plot showing the distribution of absolute
running times of three implementations of a (100 + 100)-EA
based on di�erent frameworks in R.

the implementation of new ideas and speci�c features may leave
the user overstrained. We introduced the reimplementation of the
ecr package for evolutionary computation in R. It o�ers a man-
ageable set of evolutionary components and helper functions for
building evolutionary loops in an explicit fashion (white-box ap-
proach). Sticking to just a few conventions the package o�ers a
�exible way for rapid prototyping and implementation of new EA
ideas. We showed the application on a collection of optimization
scenarios pointing out its usability in di�erent contexts and the
�exibility of the toolbox.

Future development is manifold: implementation of additional
evolutionary operators, introduction of subpopulation models and
migration schemata are just a few directions.

REFERENCES
[1] Bernd Bischl and Michel Lang. parallelMap: Uni�ed Interface to Parallelization

Back-Ends. https://github.com/berndbischl/parallelMap R package version 1.4.
[2] Jakob Bossek. 2016. cmaesr: Covariance Matrix Adaptation Evolution Strategy.

https://github.com/jakobbossek/cmaesr R package version 1.0.1.
[3] Jakob Bossek. 2016. ecr: Evolutionary Computing in R. https://github.com/

jakobbossek/ecr R package version 1.0.1.
[4] Eduardo L. T. Conceicao and Martin Maechler. 2016. DEoptimR: Di�erential

Evolution Optimization in Pure R. http://CRAN.R-project.org/package=DEoptimR
R package version 1.0-6.

[5] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: A Python Framework for Evolu-
tionary Algorithms. In Proceedings of the 14th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO ’12). ACM, New York, NY, USA,
85–92. https://doi.org/10.1145/2330784.2330799

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II. Trans. Evol. Comp 6, 2 (2002), 182–197.
https://doi.org/10.1109/4235.996017

[7] Juan J. Durillo and Antonio J. Nebro. 2011. jMetal: A Java Framework for Multi-
objective Optimization. Adv. Eng. Softw. 42, 10 (Oct. 2011), 760–771. https:
//doi.org/10.1016/j.advengsoft.2011.05.014

[8] Dirk Eddelbuettel and Romain Francois. 2011. Rcpp: Seamless R and C++ In-
tegration. Journal of Statistical Software 40, 1 (2011), 1–18. https://doi.org/10.
18637/jss.v040.i08

[9] Dirk Eddelbuettel extending DEoptim which itself is based on DE-Engine (by
Rainer Storn). 2016. RcppDE: Global Optimization by Di�erential Evolution in
C++. http://CRAN.R-project.org/package=RcppDE R package version 0.1.5.

[10] Oliver Flasch, Olaf Mersmann, Thomas Bartz-Beielstein, Joerg Stork, and Martin
Zae�erer. 2014. rgp: R genetic programming framework. http://CRAN.R-project.
org/package=rgp R package version 0.4-1.

[11] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gard-
ner, Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algo-
rithms Made Easy. J. Mach. Learn. Res. 13, 1 (July 2012), 2171–2175. http:
//dl.acm.org/citation.cfm?id=2503308.2503311

[12] N. Hansen. 2006. The CMA evolution strategy: a comparing review. In Towards a
new evolutionary computation. Advances on estimation of distribution algorithms,
J. A. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea (Eds.). Springer, Berlin,
Heidelberg, 75–102.

1192

ecr 2.0: Evolutionary Computation in R GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

[13] N. Hansen. 2009. The CMA Evolution Strategy: A Tutorial. http://www.lri.fr/
~hansen/cmatutorial.pdf

[14] M. Keijzer, J. J. Merelo, G. Romero, and Marc Schoenauer. 2002. Evolving Objects:
A General Purpose Evolutionary Computation Library. Springer Berlin Heidelberg,
Berlin, Heidelberg, 231–242. https://doi.org/10.1007/3-540-46033-0_19

[15] Wolfgang Konen and Nikolaus Hansen. 2015. rCMA: R-to-Java Interface for
’CMA-ES’. http://CRAN.R-project.org/package=rCMA R package version 1.1.

[16] Olaf Mersmann. 2012. emoa: Evolutionary Multiobjective Optimization Algorithms.
http://CRAN.R-project.org/package=emoa R package version 0.5-0.

[17] Olaf Mersmann. 2014. mco: Multiple Criteria Optimization Algorithms and Related
Functions. http://CRAN.R-project.org/package=mco R package version 1.0-15.1.

[18] Katharine Mullen, David Ardia, David Gil, Donald Windover, and James Cline.
2011. DEoptim: An R Package for Global Optimization by Di�erential Evolution.
Journal of Statistical Software 40, 6 (2011), 1–26. http://www.jstatsoft.org/v40/i06/

[19] R Core Team. 2017. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[20] Don Roberts and Ralph Johnson. 1996. Evolving Frameworks: A Pattern Lan-
guage for Developing Object-Oriented Frameworks. In Proceedings of the Third
Conference on Pattern Languages and Programming. Addison-Wesley.

[21] Luca Scrucca. 2013. GA: A Package for Genetic Algorithms in R. Journal of
Statistical Software 53, 4 (2013), 1–37. http://www.jstatsoft.org/v53/i04/

[22] Michael Stein. 1987. Large Sample Properties of Simulations Using Latin Hyper-
cube Sampling. Technometrics 29, 2 (1987), 143–151.

[23] Rainer Storn and Kenneth Price. 1995. Di�erential Evolution - A simple and
e�cient adaptive scheme for global optimization over continuous spaces. (1995).

[24] Fernando Tenorio. 2013. gaoptim: Genetic Algorithm optimization for real-based
and permutation-based problems. http://CRAN.R-project.org/package=gaoptim
R package version 1.1.

[25] S Theussl. 2013. CRAN Task View: Optimization andMathematical Programming.
(2013). https://cran.r-project.org/web/views/Optimization.html Version: 2015-
08-19.

[26] S. Wagner and M. A�enzeller. 2004. The HeuristicLab optimization environment.
Technical Report.

[27] S. Wagner and M. A�enzeller. 2005. HeuristicLab: A Generic and Extensible
Optimization Environment. Springer Vienna, Vienna, 538–541. https://doi.org/
10.1007/3-211-27389-1_130

[28] Hadley Wickham. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. http://ggplot2.org

[29] Egon Willighagen and Michel Ballings. 2015. genalg: R Based Genetic Algorithm.
http://CRAN.R-project.org/package=genalg R package version 0.2.0.

1193

